MM-DFN: Multimodal Dynamic Fusion Network for Emtion **Recognition in Conversations**

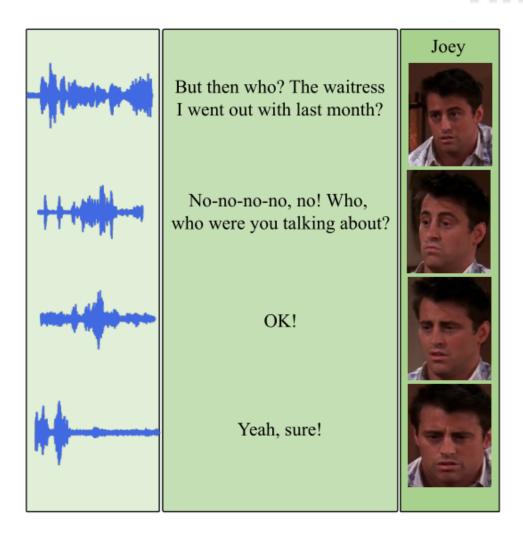
(MMGCN: Multimodal Fusion via Deep Graph Convolution Network for Emotion Recognition in Conversation)

 $Dou\ Hu^1$

Xiaolong Hou¹ Lingwei Wei² Lianxin Jiang¹

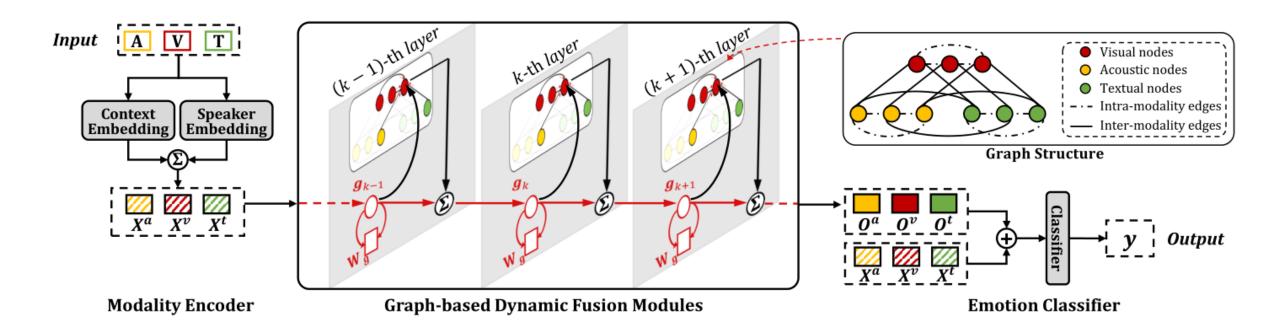
*Yang Mo*¹

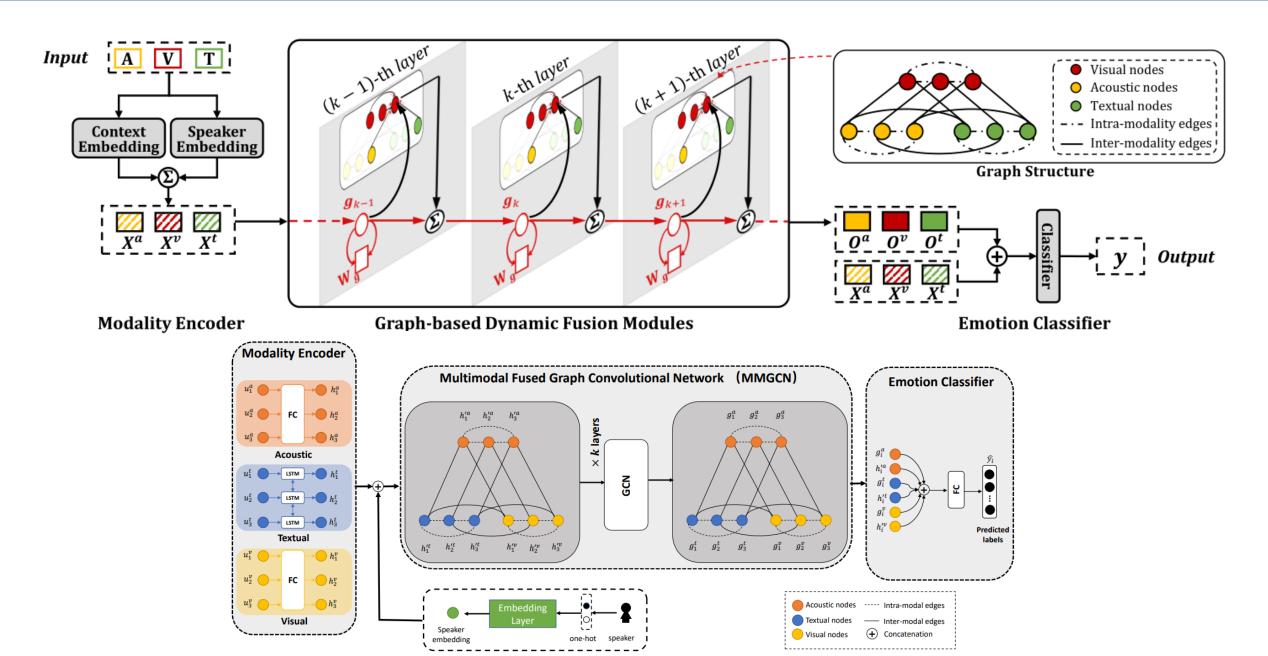
¹ Ping An Life Insurance Company of China, Ltd.


² Institute of Information Engineering, Chinese Academy of Sciences

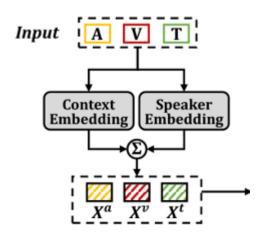
https://github.com/zerohd4869/MM-DFN

ICASSP-2022


Introduction

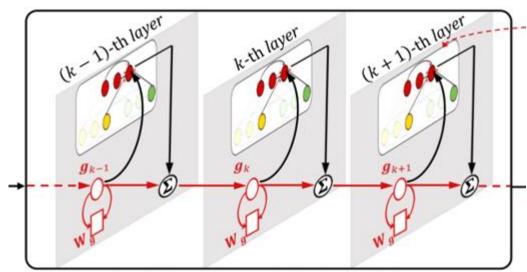


Previous methods ignore complex interactions between utterances, resulting in leveraging context information inconversations insufficiently

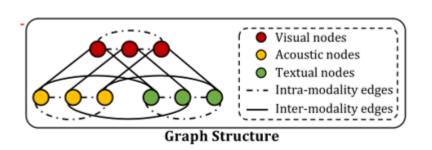

However, these graph-based fusion methods aggregate contextual information in a specific semantic space at each layer, gradually accumulating redundant information

Overview

Method


Modality Encoder

$$\mathbf{c}_{i}^{\varsigma} = \mathbf{W}_{c}^{\varsigma} \mathbf{u}_{i}^{\varsigma} + \mathbf{b}_{c}^{\varsigma}, \varsigma \in \{a, v\}, \mathbf{c}_{i}^{t}, \mathbf{h}_{i}^{c} = \overrightarrow{GRU}_{c}(\mathbf{u}_{i}^{t}, \mathbf{h}_{i-1}^{c}),$$


$$(1)$$

$$\mathbf{s}_{i}^{\delta}, \mathbf{h}_{\lambda, j}^{s} = \overrightarrow{GRU}_{s}(\mathbf{u}_{i}^{\delta}, \mathbf{h}_{\lambda, j-1}^{s}), j \in [1, |U_{\lambda}|], \delta \in \{a, v, t\}, \quad (2)$$

Method

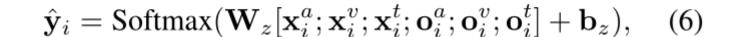
Graph-based Dynamic Fusion Modules

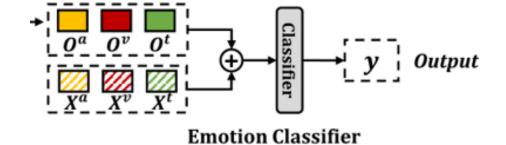
$$\mathbf{A}_{ij} = \mathbf{c}_{i}^{\delta} + \gamma^{\delta} \mathbf{s}_{i}^{\delta}, \delta \in \{a, v, t\},$$

$$\mathbf{A}_{ij} = 1 - \frac{\arccos(\sin(\mathbf{x}_{i}, \mathbf{x}_{j}))}{\pi}$$

$$\mathbf{\Gamma}_{\varepsilon}^{(k)} = \sigma(\mathbf{W}_{\varepsilon}^{g} \cdot [\mathbf{g}^{(k-1)}, \mathbf{H}'^{(k-1)}] + \mathbf{b}_{\varepsilon}^{g}), \varepsilon = \{u, f, o\},$$

$$\tilde{\mathbf{C}}^{(k)} = \tanh(\mathbf{W}_{C}^{g} \cdot [\mathbf{g}^{(k-1)}, \mathbf{H}'^{(k-1)}] + \mathbf{b}_{C}^{g}),$$


$$\mathbf{C}^{(k)} = \mathbf{\Gamma}_{f}^{(k)} \odot \mathbf{C}^{(k-1)} + \mathbf{\Gamma}_{u}^{(k)} \odot \tilde{\mathbf{C}}^{(k)}, \mathbf{g}^{(k)} = \mathbf{\Gamma}_{o}^{(k)} \odot \tanh(\mathbf{C}^{(k)}),$$


$$(4)$$

$$\mathbf{H}^{(k)} = \text{ReLU}\left(((1-\alpha)\tilde{\mathbf{P}}\mathbf{H}'^{(k-1)} + \alpha\mathbf{H}^{(0)})((1-\beta_{k-1})\mathbf{I}_n + \beta_{k-1}\mathbf{W}^{(k-1)})\right),$$
(5)
$$\beta_k = \log(\frac{\rho}{k} + 1). \quad \mathbf{H}^{(0)} \text{ is initialized with } \mathbf{X}^a, \mathbf{X}^v, \mathbf{X}^t.$$

 \mathbf{I}_n is an identity mapping matrix $\mathbf{H}'^{(k)} = \mathbf{H}^{(k)} + \mathbf{g}^{(k)}$

Method

$$\mathcal{L} = -\frac{1}{\sum_{l=1}^{L} \tau(l)} \sum_{i=1}^{L} \sum_{j=1}^{\tau(i)} \mathbf{y}_{i,j}^{l} log(\hat{\mathbf{y}}_{i,j}^{l}) + \eta \|\Theta\|_{2}, \quad (7)$$

Methods	IEMOCAP						MELD								
	Нарру	Sad	Neutral	Angry	Excited	Frustrated	Acc	w-F1	Neutral	Surprise	Sadness	Нарру	Anger	Acc	w-F1
TFN [9]	37.26	65.21	51.03	54.64	58.75	56.98	55.02	55.13	77.43	47.89	18.06	51.28	44.15	60.77	57.74
LMF [10]	37.76	66.53	52.39	57.53	58.41	59.27	56.50	56.49	76.97	47.06	21.15	54.20	46.64	61.15	58.30
MFN [11]	48.19	73.41	56.28	63.04	64.11	61.82	61.24	61.60	77.27	48.29	23.24	52.63	41.32	60.80	57.80
bc-LSTM [6]	33.82	78.76	56.75	64.35	60.25	60.75	60.51	60.42	75.66	48.57	22.06	52.10	44.39	59.62	57.29
ICON [7]	32.80	74.40	60.60	68.20	68.40	66.20	64.00	63.50	-	-	-	-	-	-	-
DialogueRNN [4]	32.20	80.26	57.89	62.82	73.87	59.76	63.52	62.89	76.97	47.69	20.41	50.92	45.52	60.31	57.66
DialogueCRN [3]	53.23	83.37	62.96	66.09	75.40	66.07	67.16	67.21	77.01	50.10	26.63	52.77	45.15	61.11	58.67
DialogueGCN [5]	51.57	80.48	57.69	53.95	72.81	57.33	63.22	62.89	75.97	46.05	19.60	51.20	40.83	58.62	56.36
MMGCN [13]	45.14	77.16	64.36	68.82	74.71	61.40	66.36	66.26	76.33	48.15	26.74	53.02	46.09	60.42	58.31
MM-DFN	42.22	78.98	66.42*	69.77*	75.56*	66.33*	68.21*	68.18*	77.76*	50.69*	22.93	54.78*	47.82*	62.49*	59.46*

Table 1. Results under the multimodal setting (A+V+T). We present the overall performance of Acc and w-F1, which mean the overall accuracy score and weighted-average F1 score, respectively. We also report F1 score per class, except two classes (i.e. *Fear* and *Disgust*) on MELD, whose results are not statistically significant due to the smaller number of training samples. Best results are highlighted in bold. * represents statistical significance over state-of-the-art scores under the paired-t test (p < 0.05).

Methods	IEMOCAP	MELD
MM-DFN	68.18	59.46
 w/o GDF - w Speaker - w Context 	63.80	58.50
 w GDF - w/o Speaker - w Context 	66.89	58.45
- w/o GDF - w/o Speaker - w Context	62.90	58.50
- w/o GDF - w/o Speaker - w/o Context	54.81	58.08

Table 2. Ablation results of MM-DFN. We report w-F1 score for both datasets.

Fusion Modules	IEMOCAP	MELD		
Concat / Gate Fusion	63.80 / 64.30	58.50 / 57.87		
Tensor / Memory Fusion	61.05 / 65.51	58.54 / 58.48		
Early / Late Fusion + GCN	64.19 / 65.34	58.69 / 58.43		
Graph-based Fusion (GF)	67.02	58.54		
 w/o Inter-Modal - w Intra-Modal 	66.91	58.53		
- w Inter-Modal - w/o Intra-Modal	66.11	58.29		
Graph-based Dynamic Fusion (GDF)	68.18	59.46		
 w/o Inter-Modal - w Intra-Modal 	67.82	59.15		
- w Inter-Modal - w/o Intra-Modal	66.22	58.31		

Table 3. Results against different fusion modules. We report w-F1 score for both datasets.

Modality		IEMOCAP	MELD			
Wiodanty	GF	GDF	GF	GDF		
A/V/T	-	47.79 / 27.46 / 61.07	-	42.72 / 32.34 / 56.95		
A + V	54.73	56.35	42.74	44.67		
A + T	65.03	65.41	57.85	58.34		
V + T	62.07	62.63	57.78	58.49		
A + V + T	67.02	68.18	58.54	59.46		

Table 4. Results of graph-based fusion methods under different modality settings. Fusion modules are not used under unimodal types. We report w-F1 score for both datasets.

Thanks